Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1968). B24, 1267
The crystal structure of HoZn_{3} * By David J. Michel and Earle Ryba, Metallurgy Section, Department of Materials Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, U.S.A.
(Received 19 March 1968)
HoZn_{3} was found by single-crystal techniques to be isostructural with YZn_{3}. The space group is Pnma with $a=6 \cdot 697, b=4 \cdot 366, c=10 \cdot 099 \AA$.

The crystal structure of HoZn_{3} has been determined by single-crystal X-ray diffraction techniques, and it was found to be isostructural with YZn_{3} (Sree Harsha \& Ryba, 1964). The alloy was prepared by melting stoichiometric amounts of $99 \cdot 5+\%$ holmium and 99.999% zinc in a sealed tantalum crucible. The resulting alloy contained minor amounts of two secondary phases, which suggests that HoZn_{3} forms by a peritectic reaction. From a Debye-Scherrer photograph ($\mathrm{Cu} K \alpha$ radiation: $\lambda=1 \cdot 54178 \AA$) of this alloy, the orthorhombic lattice parameters were found from a leastsquares fit to the data, using the Nelson-Riley extrapolation function, to be $\left(25^{\circ} \mathrm{C}\right)$:
$a=6.697 \pm 0.003, b=4.3655 \pm 0.0014, c=10.099 \pm 0.003 \AA$.
Weissenberg photographs of a well-formed single crystal from the alloy revealed that all $h k 0$ reflections with $h=2 n+1$ and $0 k l$ reflections with $k+l=2 n+1$ are absent; thus, the space group is $P n 2_{1} a$ or Pnma.

The intensities of $412 h k l$ ($k=0$ to 6) reflections were measured on an equi-inclination Weissenberg counter diffractometer with Mo $K \alpha(\lambda=0.71069 \AA)$ radiation and an ω scan. Data were recorded out to $\sin \theta=0 \cdot 5$. Intensities were corrected for absorption by the crystal, a rectangular prism $0.06 \times 0.08 \times 0.25 \mathrm{~mm}$ in size, according to the method of Burnham (1966).

Since the lattice parameters and space group possibilities indicated that HoZn_{3} is isostructural with YZn_{3}, a trial structure was refined on this basis, giving the positional and thermal parameters shown in Table 1. The full-matrix least-squares program of Busing, Martin \& Levy (1962), modified for the IBM System 360/67, was used, and atomic scattering factors, corrected for anomalous dispersion, were taken from International Tables for X-ray Crystallography (1962). Unit weights were assigned to all reflections. For all observable reflections, the residual, based on F 's, was

* This investigation was supported by the U.S. Atomic Energy Commission. Rept. No. NYO-3560-10.
8.4%. An $h 0 l$ electron density map confirmed the correctness of the structure.
$h 0 l$ structure factors and interatomic distances are given in Tables 2 and 3, respectively. The standard deviations for the interatomic distances were calculated by taking into account the standard deviations in both the positional parameters and the lattice parameters.

Table 2. Observed and calculated h0l structure factors for HoZn_{3}

$h k l$	F_{o}	F_{c}	$h k l$	F_{o}	F_{c}
002	28	-47	403	62	57
004	231	-234	404	68	-56
006	187	178	405	177	186
008	44	-32	406	56	60
$0 \cdot 0 \cdot 10$	131	-131	407	83	-85
$0 \cdot 0 \cdot 12$	67	72	408	43	-45
$0 \cdot 0 \cdot 14$	43	-40	409	43	-43
101	19	18	$4 \cdot 0 \cdot 10$	34	-38
102	98	82	$4 \cdot 0 \cdot 11$	98	111
103	84	-72	$4 \cdot 0 \cdot 12$	36	44
104	225	-231	501	64	66
105	104	89	502	25	-16
106	70	-60	503	30	-33
107	74	80	504	127	-105
108	79	79	505	88	77
109	116	-99	508	61	61
$1 \cdot 0 \cdot 10$	121	-114	509	100	-108
$1 \cdot 0 \cdot 12$	27	-15	$5 \cdot 0 \cdot 10$	59	-60
$1 \cdot 0 \cdot 13$	48	48	$5 \cdot 0 \cdot 12$	20	-22
$1 \cdot 0 \cdot 14$	84	92	600	120	-120
200	142	-166	601	120	122
201	18	19	602	35	30
202	31	30	603	22	18
203	14	-10	604	71	58
204	37	-25	605	160	-146

Table 1. Final positional parameters for HoZn_{3} from the least-squares refinement

	Equipoint	x	y	z	B
$\mathrm{Zn}(1)$	$4(c)$	0.2169 ± 0.0008	0.250	0.0432 ± 0.0005	$0.99 \pm 0.07 \AA^{2}$
$\mathrm{Zn}(2)$	$4(c)$	0.9177 ± 0.0007	0.250	0.8524 ± 0.0005	0.99 ± 0.07
$\mathrm{Zn}(3)$	$4(c)$	0.5370 ± 0.0008	0.250	0.8966 ± 0.0005	1.06 ± 0.07
Ho	$4(c)$	0.2796 ± 0.0003	0.250	0.3370 ± 0.0002	0.65 ± 0.02

Table 2 (cont.)

hkl	F_{0}	F_{c}	hkl	F_{0}	F_{c}
205	35	-31	606	94	-87
206	182	-171	609	16	-17
208	119	107	6.0.10	72	71
209	83	-49	701	123	-123
2.0.10	137	130	702	52	-47
2.0.11	30	-5	703	126	117
$2 \cdot 0 \cdot 12$	57.	-55	705	57	-49
2.0.13	52	52	707	85	-79
302	188	-244	708	20	20
303	103	90	709	114	119
304	182	192	800	27	-25
305	7	6	801	48	-35
306	140	136	803	44	58
307	31	-31	804	20	17
308	92	-93	805	96	89
309	61	54	807	71	-62
3.0.10	79	74	901	88	85
3.0.12	32	32	903	82	-72
400	170	190	904	29	-12
401	96	-106			

The existence of REZn_{3} compounds ($\mathrm{RE}=$ rare earth) has been established in the $\mathrm{Y}-\mathrm{Zn}$ (Chiotti, Mason \& Gill, 1963), Ce-Zn (Chiotti \& Mason, 1965), Dy-Zn (Sree Harsha, 1964), $\mathrm{Sm}-\mathrm{Zn}$ (Chiotti \& Mason, 1967a), and $\mathrm{Ho}-\mathrm{Zn}$ systems. Table 4 gives the available crystallographic data for $\mathrm{YZn}_{3}, \mathrm{DyZn}_{3}$ and CeZn_{3}. Only DyZn_{3} and HoZn_{3} have so far been found to have the YZn_{3}-type structure, but all REZn_{3} compounds probably have the same structure except for CeZn_{3}, which has a slightly different structure (Lott \& Chiotti, 1966), YbZn_{3}, which has been reported not to exist (Chiotti \& Mason, 1967b), and possibly EuZn_{3}. The interatomic distances in YZn_{3} and HoZn_{3} are similar, but there are significant differences between them even though the CN12 radius of Ho is only 2.7% smaller than that of Y. In addition, the Ho-Ho and Y-Y distances are longer than expected, while many $\mathrm{Zn}-\mathrm{Zn}$ distances are contracted. The structure appears to be predominantly controlled by the coordination of the zinc atoms. Fig. 1 shows (a) the basic layer of the structure, which lies in a plane perpendicular to the b axis, and (b) the coordination of the Ho atoms. The zinc atoms in the basic layer form chains
of side sharing pentagons and the holmium atoms occupy the space between these chains. Adjacent layers fit together so that the holmium atoms partially occupy the holes in the centers of the zinc atom pentagons.

(a)

(b)

Fig. 1. Atom arrangement in HoZn_{3}. (a) Basic layer (size of circles corresponds to CN12 radii); (b) Holmium atom coordination.

Table 3. Interatomic distances in HoZn_{3}

$\mathrm{Ho}-2 \mathrm{Ho}$	$3.782 \pm 0.003 \AA$
$\mathrm{Ho}-1 \mathrm{Zn}(1)$	3.958 ± 0.006
$\mathrm{Ho}-1 \mathrm{Zn}(1)$	3.169 ± 0.006
$\mathrm{Ho}-2 \mathrm{Zn}(1)$	3.017 ± 0.004
$\mathrm{Ho}-1 \mathrm{Zn}(1)$	2.997 ± 0.006
$\mathrm{Ho}-1 \mathrm{Zn}(2)$	$3 \cdot 270 \pm 0.005$
$\mathrm{Ho}-2 \mathrm{Zn}(2)$	3.189 ± 0.004
$\mathrm{Ho}-2 \mathrm{Zn}(2)$	2.983 ± 0.004
$\mathrm{Ho}-2 \mathrm{Zn}(3)$	3.441 ± 0.004
$\mathrm{Ho}-1 \mathrm{Zn}(3)$	3.143 ± 0.006
$\mathrm{Ho}-2 \mathrm{Zn}(3)$	3.102 ± 0.004
$\mathrm{Zn}(1)-1 \mathrm{Ho}$	3.958 ± 0.006
$\mathrm{Zn}(1)-1 \mathrm{Ho}$	$3 \cdot 169 \pm 0.006$
$\mathrm{Zn}(1)-2 \mathrm{Ho}$	3.017 ± 0.004
$\mathrm{Zn}(1)-1 \mathrm{Ho}$	2.997 ± 0.006
$\mathrm{Zn}(1)-1 \mathrm{Zn}(2)$	2.780 ± 0.007
$\mathrm{Zn}(1)-2 \mathrm{Zn}(2)$	2.586 ± 0.004
$\mathrm{Zn}(1)-2 \mathrm{Zn}(3)$	2.802 ± 0.005
$\mathrm{Zn}(1)-1 \mathrm{Zn}(3)$	2.605 ± 0.007

$\mathrm{Zn}(2)-1 \mathrm{Ho}$	$3 \cdot 270 \pm 0 \cdot 005 \AA$
$\mathrm{Zn}(2)-2 \mathrm{Ho}$	$3 \cdot 189 \pm 0.004$
$\mathrm{Zn}(2)-2 \mathrm{Ho}$	$2.983 \pm 0 \cdot 004$
$\mathrm{Zn}(2)-1 \mathrm{Zn}(1)$	$2 \cdot 780 \pm 0 \cdot 007$
$\mathrm{Zn}(2)-2 \mathrm{Zn}(1)$	$2 \cdot 586 \pm 0 \cdot 004$
$\mathrm{Zn}(2)-2 \mathrm{Zn}(2)$	$3 \cdot 856 \pm 0.006$
$\mathrm{Zn}(2)-1 \mathrm{Zn}(3)$	$2 \cdot 638 \pm 0 \cdot 007$
$\mathrm{Zn}(2)-1 \mathrm{Zn}(3)$	$2 \cdot 588 \pm 0.007$
$\mathrm{Zn}(3)-2 \mathrm{Ho}$	$3 \cdot 441 \pm 0.004$
$\mathrm{Zn}(3)-1 \mathrm{Ho}$	$3 \cdot 143 \pm 0 \cdot 006$
$\mathrm{Zn}(3)-2 \mathrm{Ho}$	$3 \cdot 102 \pm 0.004$
$\mathrm{Zn}(3)-2 \mathrm{Zn}(1)$	$2 \cdot 802 \pm 0 \cdot 005$
$\mathrm{Zn}(3)-1 \mathrm{Zn}(2)$	$2 \cdot 638 \pm 0.007$
$\mathrm{Zn}(3)-1 \mathrm{Zn}(2)$	$2 \cdot 588 \pm 0.007$
$\mathrm{Zn}(3)-2 \mathrm{Zn}(3)$	3.062 ± 0.005

Table 4. Crystallographic data for REZn_{3} compounds*

$$
\begin{gathered}
\mathrm{YZn}_{3} \\
a=6.690 \pm 0.005, b=4 \cdot 405 \pm 0 \cdot 003, c=10.111 \pm 0.009 \AA \\
P n m a
\end{gathered}
$$

	Equipoint	x		y		z		B
Zn (1)	4(c)	$0 \cdot 2152 \pm 0.0014$		$0 \cdot 25$		0.0449 ± 0.0009		$1 \cdot 22 \pm 0.17 \AA^{2}$
Zn (2)	4(c)	$0 \cdot 9162 \pm 0.0014$		$0 \cdot 25$		0.8549 ± 0.0009		$1 \cdot 27 \pm 0 \cdot 17$
$\mathrm{Zn}(3)$	4(c)	0.5362 ± 0.0013		$0 \cdot 25$		0.8956 ± 0.0009		$1 \cdot 20 \pm 0 \cdot 16$
Y	4(c)	0.2773 ± 0.0009		$0 \cdot 25$		0.3387 ± 0.0006		$0 \cdot 62 \pm 0.10$
		$\begin{gathered} \underset{\mathrm{DyZn}_{3}}{ } a=6.700, b=4.398, c=10.06 \AA \\ \text { Pnma } \end{gathered}$						
		Equipoint	x		y	z	B	
	Zn (1)	$4(c) \quad 0$	$0 \cdot 216$		$0 \cdot 25$	0.042	$1.4 \AA^{2}$	
	Zn (2)	$4(c) \quad 0$	$0 \cdot 961$		$0 \cdot 25$	0.853	$1 \cdot 1$	
	$\mathrm{Zn}(3)$	$4(c) \quad 0$	$0 \cdot 535$		$0 \cdot 25$	0.897	$0 \cdot 9$	
	Dy	$4(c) \quad 0$	$0 \cdot 279$		$0 \cdot 25$	0.336	$2 \cdot 2$	
		$\begin{gathered} a=4.62 \pm 0.01, b=10.43 \pm 0.01, c=6.64 \pm 0.01 \AA \\ C 2 c m, C m c 2, \text { or } C m c m \end{gathered}$						
* $\mathrm{YZn}_{3}: \quad$ Sree Harsha \& Ryba (1964)								

Sree Harsha (1967) has investigated the structure of CeZn_{3}, but full details are not yet available. The lattice parameters are similar to those of the other REZn_{3} compounds, and it is suspected that only slight atom shifts are necessary to change the symmetry.

We would like to acknowledge the assistance of Mrs Cheryl Ailes in the collection and processing of the intensity data.

References

Burnham, C. W. (1966). Amer. Min. 51, 159.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. Oak Ridge National Laboratory Report ORNL-TM-305, Oak Ridge, Tennessee.

Chiotit, P. \& Mason, J. T. (1965). Trans. AIME, 233, 786.
Chiotti, P. \& Mason, J. T. (1967a). Trans. AIME, 239, 547.
Chiotti, P. \& Mason, J. T. (1967b). Ames Laboratory Report IS-RD-10, April-June, Ames Laboratory, U.S. Atomic Energy Commission, Iowa State University, Ames, Iowa.
Chotti, P., Mason, J. T. \& Gill, K. J. (1963). Trans. AIME, 227, 910.
International Tables for X-ray Crystallography (1962). Vol. III. Table 3.3.1B. Birmingham: Kynoch Press.

Lott, B. G. \& Chiotti, P. (1966). Acta Cryst. 20, 733.
Sree Harsha, K. S. (1964). Ph. D. Thesis, The Pennsylvania State University, University Park, Pennsylvania.
Sree Harsha, K. S. (1967). Private communication.
Sree Harsha, K. S. \& Ryba, E. (1964). Abstract D-6, Annual Meeting ACA, Bozeman, Montana.

Acta Cryst. (1968). B24, 1269

The crystal structure of tris- (2-dimethylaminoethyl)aminemanganese (II), -iron (II) and -zinc (II) bromides. By M. Di Vaira and P. L. Orioli, Istituto di Chimica Generale e Inorganica, Università di Firenze, Florence, Italy
(Received 16 April 1968)
The crystal structures of the isomorphous compounds $\mathrm{Mn}\left(\mathrm{Me}_{6} \operatorname{tren}\right) \mathrm{Br}_{2}, \mathrm{Fe}\left(\mathrm{Me}_{6} \operatorname{tren}\right) \mathrm{Br}_{2}$ and $\mathrm{Zn}\left(\mathrm{Me}_{6} \operatorname{tren}\right) \mathrm{Br}_{2}$ [Me_{6} tren $=\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}$] have been investigated by three-dimensional X-ray analysis and refined to final R values of $0.067,0.055$ and 0.065 respectively. Crystals of the three complexes are cubic, space group $P 2_{1} 3$, with $a=12 \cdot 216 \pm 0 \cdot 007,12 \cdot 185 \pm 0 \cdot 004$ and $12 \cdot 105 \pm 0 \cdot 003 \AA$ for the manganese(II), iron(II) and zinc(II) compounds respectively; $Z=4$. The three structures consist of $\mathrm{M}\left(\mathrm{Me}_{6}\right.$ tren) Br^{+}and Br^{-}ions, arranged in a distorted NaCl type arrangement. The coordination polyhedron about the metal atoms is a trigonal bipyramid with C_{3} crystallographic symmetry. The structure is essentially identical with that of the cobalt(II), nickel(II) and copper(II) analogues. The manganese(II) compound represents the first example of pentacoordination for this ion so far described by X-ray methods. The iron(II) complex is the first structure determined by X-rays, with trigonal bipyramidal arrangement about this ion.

A series of five-coordinated high spin complexes with general formula $\mathrm{M}^{\text {II }}\left(\mathrm{Me}_{6}\right.$ tren $) \mathrm{X}_{2}$, where $\mathrm{M}^{\mathrm{II}}=\mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}$, $\mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$ and Me_{6} tren $=$ tris-(2-dimethylaminoethyl)amine, $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}$, and $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{NO}_{3}$ or
ClO_{4}, has been prepared by Ciampolini \& Nardi $(1966 a, b)$.
As a part of an X-ray structural investigation of the isomorphous series of the complex bromides, we have previously reported the structures of the cobalt(II) (Di Vaira

