Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1968). B24, 1267

The crystal structure of HoZn₃.* By DAVID J. MICHEL and EARLE RYBA, Metallurgy Section, Department of Materials Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, U.S.A.

(Received 19 March 1968)

HoZn₃ was found by single-crystal techniques to be isostructural with YZn₃. The space group is *Pnma* with a=6.697, b=4.366, c=10.099 Å.

The crystal structure of HoZn₃ has been determined by single-crystal X-ray diffraction techniques, and it was found to be isostructural with YZn₃ (Sree Harsha & Ryba, 1964). The alloy was prepared by melting stoichiometric amounts of 99.5 + % holmium and 99.999% zinc in a sealed tantalum crucible. The resulting alloy contained minor amounts of two secondary phases, which suggests that HoZn₃ forms by a peritectic reaction. From a Debye–Scherrer photograph (Cu K α radiation: $\lambda = 1.54178$ Å) of this alloy, the orthorhombic lattice parameters were found from a leastsquares fit to the data, using the Nelson–Riley extrapolation function, to be (25 °C):

 $a = 6.697 \pm 0.003$, $b = 4.3655 \pm 0.0014$, $c = 10.099 \pm 0.003$ Å.

Weissenberg photographs of a well-formed single crystal from the alloy revealed that all hk0 reflections with h = 2n + 1and 0kl reflections with k + l = 2n + 1 are absent; thus, the space group is $Pn2_1a$ or Pnma.

The intensities of 412 *hkl* (k=0 to 6) reflections were measured on an equi-inclination Weissenberg counter diffractometer with Mo K α ($\lambda = 0.71069$ Å) radiation and an ω scan. Data were recorded out to sin $\theta = 0.5$. Intensities were corrected for absorption by the crystal, a rectangular prism $0.06 \times 0.08 \times 0.25$ mm in size, according to the method of Burnham (1966).

Since the lattice parameters and space group possibilities indicated that HoZn₃ is isostructural with YZn₃, a trial structure was refined on this basis, giving the positional and thermal parameters shown in Table 1. The full-matrix least-squares program of Busing, Martin & Levy (1962), modified for the IBM System 360/67, was used, and atomic scattering factors, corrected for anomalous dispersion, were taken from *International Tables for X-ray Crystallography* (1962). Unit weights were assigned to all reflections. For all observable reflections, the residual, based on F's, was

* This investigation was supported by the U.S. Atomic Energy Commission. Rept. No. NYO-3560-10.

8.4%. An *h0l* electron density map confirmed the correctness of the structure.

hol structure factors and interatomic distances are given in Tables 2 and 3, respectively. The standard deviations for the interatomic distances were calculated by taking into account the standard deviations in both the positional parameters and the lattice parameters.

Table 2. Observed and calculated hol structure factors for HoZn₃

F_{o}	F_{c}	hkl	Fo	Fc
28	- 47	403	62	57
231	-234	404	68	56
187	178	405	177	186
44	- 32	406	56	60
131	-131	407	83	-85
67	72	408	43	-45
43	-40	409	43	-43
19	18	4.0.10	34	- 38
98	82	4.0.11	98	111
84	- 72	4.0.15	36	44
225	-231	501	64	66
104	89	502	25	- 16
70	- 60	503	30	- 33
74	80	504	127	- 105
79	79	505	88	77
116	- 99	508	61	61
121	-114	509	100	- 108
27	-15	5.0.10	59	- 60
48	48	5.0.12	20	- 22
84	92	600	120	-120
142	-166	601	120	122
18	19	602	35	30
31	30	603	22	18
14	-10	604	71	58
37	-25	605	160	- 146
	Fo 28 231 187 44 131 67 43 19 98 84 225 104 70 74 79 116 121 27 48 84 142 18 31 14 37	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1. Final positional parameters for HoZn₃ from the least-squares refinement

	Equipoint	х	У	Z	В
Zn(1)	4(c)	0.2169 ± 0.0008	0.250	0.0432 ± 0.0005	0·99±0·07 Å ²
Zn(2)	4(c)	0.9177 ± 0.0007	0.250	0.8524 ± 0.0005	0·99 <u>+</u> 0·07
Zn(3)	4(c)	0.5370 ± 0.0008	0.250	0.8966 ± 0.0005	1.06 ± 0.07
Ho	4(c)	0.2796 ± 0.0003	0.220	0.3370 ± 0.0002	0.65 ± 0.02

Table 2 (cont.)					
hkl	Fo	Fc	hkl	Fo	Fc
205	35	-31	606	94	-87
206	182	-171	609	16	17
208	119	107	6.0.10	72	71
209	83	- 49	701	123	- 123
2.0.10	137	130	702	52	- 47
2.0.11	30	-5	703	126	117
2.0.12	57	- 55	705	57	49
2.0.13	52	52	707	85	- 79
302	188	-244	708	20	20
303	103	90	709	114	119
304	182	192	800	27	- 25
305	7	6	801	48	-35
306	140	136	803	44	58
307	31	- 31	804	20	17
308	92	-93	805	96	89
309	61	54	807	71	-62
3.0.10	79	74	901	88	85
3.0.12	32	32	903	82	- 72
400	170	190	904	29	-12
401	96	-106			

The existence of REZn₃ compounds (RE=rare earth) has been established in the Y-Zn (Chiotti, Mason & Gill, 1963), Ce-Zn (Chiotti & Mason, 1965), Dy-Zn (Sree Harsha, 1964), Sm-Zn (Chiotti & Mason, 1967a), and Ho-Zn systems. Table 4 gives the available crystallographic data for YZn₃, DyZn₃ and CeZn₃. Only DyZn₃ and HoZn₃ have so far been found to have the YZn₃-type structure, but all REZn₃ compounds probably have the same structure except for CeZn₃, which has a slightly different structure (Lott & Chiotti, 1966), YbZn₃, which has been reported not to exist (Chiotti & Mason, 1967b), and possibly EuZn₃. The interatomic distances in YZn3 and HoZn3 are similar, but there are significant differences between them even though the CN12 radius of Ho is only 2.7% smaller than that of Y. In addition, the Ho-Ho and Y-Y distances are longer than expected, while many Zn-Zn distances are contracted. The structure appears to be predominantly controlled by the coordination of the zinc atoms. Fig.1 shows (a) the basic layer of the structure, which lies in a plane perpendicular to the b axis, and (b) the coordination of the Ho atoms. The zinc atoms in the basic layer form chains

> 1 1

of side sharing pentagons and the holmium atoms occupy the space between these chains. Adjacent layers fit together so that the holmium atoms partially occupy the holes in the centers of the zinc atom pentagons.

Fig.1. Atom arrangement in HoZn₃. (a) Basic layer (size of circles corresponds to CN12 radii); (b) Holmium atom coordination.

(b)

Table 3. Interatomic distances in HoZn₃

Ho_2Ho	3.782 ± 0.003 Å	Zn(2)-1Ho	3·270 + 0·005 Å
$H_0 = 17n(1)$	3.958 ± 0.006	$Z_{\rm II}(2) - 2H_0$	3.189 ± 0.004
$10^{-1}Z_{11}(1)$	3.169 ± 0.006	7n(2)-2Ho	2.983 ± 0.004
$n_0 - 1 L_{n_0}(1)$	2 017 1 0.004	7n(2) - 17n(1)	2.780 ± 0.007
Ho-2Zn(1)	3.017 ± 0.004	$Z_{II}(2) - 1Z_{II}(1)$	2.586 1 0.004
Ho-1Zn(1)	2.997 ± 0.006	Zn(z)-zZn(1)	2.386 ± 0.004
Ho-1Zn(2)	3.270 ± 0.005	Zn(2)-2Zn(2)	3.856 ± 0.006
Ho-2Zn(2)	3.189 ± 0.004	Zn(2)-1Zn(3)	2.638 ± 0.007
Ho-2Zn(2)	2.983 ± 0.004	Zn(2)-1Zn(3)	2·588 <u>+</u> 0·007
Ho-2Zn(3)	3.441 ± 0.004		
$H_0-1Z_n(3)$	3.143 ± 0.006	Zn(3)–2Ho	3.441 ± 0.004
$H_{0}-2Z_{n}(3)$	3.102 ± 0.004	Zn(3)-1Ho	3.143 ± 0.006
		Zn(3)-2Ho	3.102 ± 0.004
Zn(1)-1Ho	3.958 ± 0.006	Zn(3)-2Zn(1)	2.802 ± 0.005
Zn(1)-1Ho	3.169 ± 0.006	Zn(3) - 1Zn(2)	2.638 ± 0.007
Zn(1)-2Ho	3.017 ± 0.004	Zn(3)-1Zn(2)	2·588 <u>+</u> 0·007
Zn(1)-1Ho	2.997 ± 0.006	Zn(3)-2Zn(3)	3.062 ± 0.005
Zn(1) - 1Zn(2)	2.780 ± 0.007		
Zn(1)-2Zn(2)	2.586 ± 0.004		
Zn(1)-2Zn(3)	2.802 ± 0.005		
Zn(1)-1Zn(3)	2.605 ± 0.007		

Table 4. Crystallographic data for REZn₃ compounds*

YZn₃ $a = 6.690 \pm 0.005, b = 4.405 \pm 0.003, c = 10.111 \pm 0.009 \text{ Å}$

				1 111114		
Zn(1) Zn(2) Zn(3)	Equipoint 4(c) 4(c) 4(c)	$x = 0.2152 \pm 0.00 \\ 0.9162 \pm 0.00 \\ 0.5362 \pm 0.00 \\ 0.00 \\ 0.5362 \pm 0.00 \\$	014 014 013	y 0·25 0·25 0·25	z 0.0449 ± 0.0009 0.8549 ± 0.0009 0.8956 ± 0.0009	$B = \frac{1 \cdot 22 \pm 0.17 ^{\text{A}2}}{1 \cdot 27 \pm 0.17} = \frac{1 \cdot 27 \pm 0.17}{1 \cdot 20 \pm 0.16}$
Ŷ	4(c)	0.2773 ± 0.00	009	0.25	0.3387 ± 0.0006	0.62 ± 0.10
		a = 0	b.700, b =	$\begin{array}{l} \text{DyZn}_{3} \\ 4 \cdot 398, c = \\ Pnma \end{array}$	10·06 Å	
		Equipoint	x	У	Ζ	В
	Zn(1) Zn(2)	$4(c) \\ 4(c)$	0·216 0·961	0·25 0·25	0·042 0·853	1·4 Ų 1·1
	Zn(3) Dy	4(c) 4(c)	0·535 0·279	0·25 0·25	0·897 0·336	0·9 2·2
		$a = 4.62 \pm 0.0$	b = 10 C2cm, C	$CeZn_3$ $\cdot 43 \pm 0.01$, mc2, or Cr	$c = 6.64 \pm 0.01 \text{ Å}$	
		* YZn3: DyZn3 CeZn3	Sree H S: Sree H Lott &	Iarsha & R Iarsha (196 & Chiotti (1	kyba (1964) 64) 1966)	

Sree Harsha (1967) has investigated the structure of $CeZn_3$, but full details are not yet available. The lattice parameters are similar to those of the other $REZn_3$ compounds, and it is suspected that only slight atom shifts are necessary to change the symmetry.

We would like to acknowledge the assistance of Mrs Cheryl Ailes in the collection and processing of the intensity data.

References

BURNHAM, C. W. (1966). Amer. Min. 51, 159.

BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. Oak Ridge National Laboratory Report ORNL-TM-305, Oak Ridge, Tennessee. CHIOTTI, P. & MASON, J. T. (1965). Trans. AIME, 233, 786.

- CHIOTTI, P. & MASON, J. T. (1967a). Trans. AIME, 239, 547.
- CHIOTTI, P. & MASON, J. T. (1967b). Ames Laboratory Report IS-RD-10, April-June, Ames Laboratory, U.S. Atomic Energy Commission, Iowa State University, Ames, Iowa.
- CHIOTTI, P., MASON, J. T. & GILL, K. J. (1963). Trans. AIME, 227, 910.
- International Tables for X-ray Crystallography (1962). Vol. III. Table 3.3.1B. Birmingham: Kynoch Press.
- LOTT, B. G. & CHIOTTI, P. (1966). Acta Cryst. 20, 733.
- SREE HARSHA, K. S. (1964). Ph. D. Thesis, The Pennsylvania State University, University Park, Pennsylvania.
- SREE HARSHA, K. S. (1967). Private communication.
- SREE HARSHA, K. S. & RYBA, E. (1964). Abstract D-6, Annual Meeting ACA, Bozeman, Montana.

Acta Cryst. (1968). B24, 1269

The crystal structure of tris- (2-dimethylaminoethyl)aminemanganese (II), -iron (II) and -zinc (II) bromides.

By M. DI VAIRA and P. L. ORIOLI, Istituto di Chimica Generale e Inorganica, Università di Firenze, Florence, Italy

(Received 16 April 1968)

The crystal structures of the isomorphous compounds $Mn(Me_6tren)Br_2$, $Fe(Me_6tren)Br_2$ and $Zn(Me_6tren)Br_2$ [Me₆tren = N(CH₂CH₂N(CH₃)₂)₃] have been investigated by three-dimensional X-ray analysis and refined to final R values of 0.067, 0.055 and 0.065 respectively. Crystals of the three complexes are cubic, space group P2₁3, with $a=12\cdot216\pm0.007$, 12·185 ±0.004 and 12·105 ±0.003 Å for the manganese(II), iron(II) and zinc(II) compounds respectively; Z=4. The three structures consist of M(Me₆tren)Br⁺ and Br⁻ ions, arranged in a distorted NaCl type arrangement. The coordination polyhedron about the metal atoms is a trigonal bipyramid with C₃ crystallographic symmetry. The structure is essentially identical with that of the cobalt(II), nickel(II) and copper(II) analogues. The manganese(II) compound represents the first example of pentacoordination for this ion so far described by X-ray methods. The iron(II) complex is the first structure determined by X-rays, with trigonal bipyramidal arrangement about this ion.

A series of five-coordinated high spin complexes with general formula $M^{II}(Me_6tren)X_2$, where $M^{II}=Cr, Mn, Fe, Co,$ Ni, Cu, Zn and Me₆tren = tris-(2-dimethylaminoethyl)amine, N(CH₂CH₂N(CH₃)₂)₃, and X = Cl, Br, I, NO₃ or ClO₄, has been prepared by Ciampolini & Nardi (1966a, b).

As a part of an X-ray structural investigation of the isomorphous series of the complex bromides, we have previously reported the structures of the cobalt(II) (Di Vaira